

ASML company presentation Updated for Q2 2023 (July 2023)

Q2 2023

Agenda

01	Chips are everywhere	3
02	Introducing ASML	11
03	ASML's place in the industry	19
04	Lithography drives IC innovation	25
05	Technology	32
06	How do we do it	48
07	Our sustainability commitment	55
08	Business update	60

Chips are everywhere

The world is changing faster than ever before

Connected world

- Smarter cities, factories, homes, cars
- Connecting billions of 'things'
- Unprecedented data volumes
- Privacy in a connected world
- Cybersecurity

Climate change and resource scarcity

- Rising energy use
- Exploding energy costs
- Accelerating climate change
- More waste and pollution
- Fragile food chains
- Material shortages

.

. . .

Social and economic shifts

Rising population

٠

.

. . .

- Higher medical costs
- Faster urbanization
- Need for tech talent
- Deglobalization
- Technological sovereignty

ASML Q2 2023

And this industry can help unlock the potential

Chips are already the fabric of our modern world

And the semiconductor market is expected to double in 10 years

Analysts' views on 2030 market are ranging from \$1.0tn to \$1.3tn

Sources: TechInsights, McKinsey, SEMI.org

Our ecosystem has considerable means to drive further innovation

50 top technology companies in our ecosystem generated \$688 billion of EBIT in 2021

Source: Bloomberg, companies' annual reports, and ASML analysis. Note: EBIT = Earnings before Interest & Taxes; 50 top companies are top IT companies from the GICS 45 classification, according to EBIT rankings, plus Amazon, which is categorized as a retail company by the GICS(= Global Industry Classification Standard). This chart uses the total EBIT of a company.

The future will be all about distributed computing

And the next wave of connectivity is just starting

Lower latency, higher bandwidth will enable a connected world (human-to-machine and machine-to-machine)

By 2026, global 5G subscriptions are estimated to top 3.5 billion with infrastructure investment of \$150B

By 2030, that investment is expected to grow to \$250B

This transformation has only just begun

Introducing ASML

ASML in 1 minute

Click here: https://www.youtube.com/watch?v=wl6nCmG-Ppl

Our story begins in the Philips lab in 1984

Humble beginnings make for a strong can-do culture

Started as a joint venture by Philips and ASMI Just 31 employees with a can-do attitude It took a decade of perseverance to break into the market

Innovation and perseverance have brought us here

A global presence with >40,000 employees (year-end 2022)

Offices in over 60 cities in 16 locations worldwide

Some of our key industrial sites around the world

All major chipmakers are our customers

Customer	HQ	2023 capex est. (\$B)
TSMC	Taiwan	33
Samsung	Korea	26
Intel Corporation	USA	23
SK Hynix	Korea	7
Micron	USA	6
SMIC	China	6
GlobalFoundries	USA	3.7
STMicroelectronics	Europe	2.8
UMC	Taiwan	2.5
Texas Instruments	USA	2
Others		25,2
Total (Gartner, Dec 2022)		137.2

OUR PURPOSE Why we exist

OUR VISION What we try to achieve

OUR MISSION What we uniquely do

Unlocking the potential of people and society by pushing technology to new limits.

We enable groundbreaking technology to solve some of humanity's toughest challenges. Together with our partners, we provide leading patterning solutions that drive the advancement of microchips.

ASML's place in the industry

The world has been improving computer power for 120 years

18 orders of magnitude increase of calculation speed per dollar, and continuing

Source: Ray Kurzweil, Steve Jurvetson

For over 50 years, Moore's Law has been a law of economics

- Imagine printing the book The Hitchhiker's Guide To The Galaxy (by the late great Douglas Adams)
- That's 227 pages at font size 14
- Now shrink all text to font size 7 and observe Moore's Law at work

- You've halved the cost to print the book
- You've halved the time to print the book
- You've doubled the information density of the book

So Moore's Law makes chips cheaper...

...and electronic devices much more powerful

Apple iPhone 14 Pro Max

Today, Moore's Law drives megatrends that shape our connected world

Lithography drives IC innovation

Key to Moore's Law: Making smaller transistors

The first integrated circuit on silicon, on a wafer the size of a fingernail

(Fairchild Semiconductor, 1959)

Today: Billions of transistors on the same area

Lithography is critical for shrinking transistors

Lithography is the only semiconductor production step to process the wafer die per die, in contrast with all other production steps. This makes ASML's technology so pivotal in getting the highest yield and best performance in chip manufacturing

Lithography: Ancient Greek λ ίθος, lithos, meaning 'stone', and γράφειν, graphein, meaning 'to write')

How a lithography system works

A chip is made of dozens of layers

The semiconductor manufacturing loop

Making a transistor

Technology

Lithography innovation keeps chip manufacturing affordable

Key innovation: TWINSCAN

Key innovation: Wavelength changes

Key innovation: Immersion lens

Key changes from DUV to EUV lithography

EUV's crisper resolution means higher information density

EUV's 13 nanometer resolution means that we could print the entire Lord of the Rings trilogy on the side of an A4 sheet of paper...

2,625 times!

In the world of EUV, everything is bigger

Transportation takes 40 containers, 20 trucks and 3 fully loaded 747s

NXE has over 100,000 individual parts, 3,000 cables, 40,000 bolts and 2 km of hosing...

Transportation takes 40 containers, 20 trucks and 3 fully loaded 747s It has about 1,500 sensors to capture imaging data

Weighs in at 180,000 kilograms

(That's 140 Mini Coopers!) It generates about 4.5 TB of data per day

ASML Q2 2023

Firing a laser on a tin droplet 50,000 times a second

Firing a laser on a tin droplet 50,000 times a second

So, how strong is this CO₂ laser ?

Mirrors: Polished to sub-nanometer accuracy

EUV mirrors are polished to an accuracy of ~50 picometers – less than the diameter of a silicon atom.

Blown up to the size of Germany, the biggest difference in height would be less than a millimeter.

Maintaining a clean vacuum

We need to maintain a clean vacuum, but every time we expose a wafer, the photoresist releases trillions of particles

A tightly integrated set of solutions for scaling and yield

ASML has been on a journey to keep scaling affordable

How do we do it

R&D is our life blood: this is how we push technology further

Our R&D investments amount to >€3 billion per year

PAS 2000/5000

Great people in an integrated supply chain

Open Innovation from design to manufacturing

Customers

- Commit early to innovation path
- Test, qualify, scale lithography
- Drive ecosystem for innovation

Peers

- Deliver critical infrastructure
- Innovate manufacturing
 process steps

Academic partners

 Long-term academic tracks yield advances across fields (physics, chemistry, material sciences, etc)

Suppliers

- Drive innovation and cost roadmap
- Share risk and reward

ASML

ASML

-

Example: our supply chain in The Netherlands

Suppliers We see ourselves as architects and integrators: Some 85% of the bill of materials of our machines is manufactured by suppliers Universities **Research institutes** Government

Real magic happens when R&D meets manufacturing

Partners reduce cost, improve design and can adapt tech for othe markets

Advanced thermal and edge sensors

- Collaboration on these parts runs all the way from early design to actual manufacturing
- These next generation sensors cover a very broad range of industrial requirements, so Neways can leverage the knowledge in other markets

CO2 drive laser for EUV

- Delivering this critical technology for generation of EUV light meant close collaboration for the long term
- The key is sharing knowledge and sharing people with the same DNA on R&D
- Trust and Win-Win: long term business model

ASML and ZEISS makes for another perfect example

Long-time partnership powers the future of chip manufacturing with EUV lithography

A mirror for High-NA EUV in production at ZEISS SMT (source: ZEISS SMT media library)

- Strategic partners since the 1980s under the creed "two companies, one business"
- Sharing risk and reward to create value for our stakeholders
- R&D and manufacturing capabilities in a European technology ecosystem, generating over 60,000 jobs in Europe
- Building the future of semiconductor manufacturing with High-NA EUV lithography systems

High-NA cleanroom under construction on ASML's campus in Veldhoven

Our sustainability commitment

Our innovation must be up to the challenge that the chip industry faces:

Continue to drive Moore's law with a clear path towards zero emission

Challenges

- Growth of our industry & company
- Increased power comsumption of new machines

Our targets

- Reduce EUV energy use per wafer by 60% in 2025
- Net zero emissions by 2040
- No waste to landfill & incineration by 2030

How we drive ESG Sustainability: our ambitions

Environment	1	Energy efficiency & climate action	Net zero greenhouse gas emissions in our value chain by 2040
	2	Circular economy	Zero waste from operations to landfill and incineration by 2030
Social	3	Attractive workplace for all	ASML attracts and retains a healthy, diverse and engaged workforce
	4	Responsible supply chain	Engaged suppliers who are committed to minimize negative environmental and social impacts in our supply chain
	5	Innovation ecosystem	A thriving, multi-regional innovation ecosystem which helps solve some of humanity's toughest challenges
	6	Valued partner in our communities	ASML and communities benefit from each other's presence and support each other's development
Governance	7	Integrated governance	ESG is part of all regular, day-to-day decision making
	8	Engaged stakeholders	Our stakeholders view ASML as a top performer on ESG Sustainability
	9	Transparent reporting	'Best-in-class' reporting, according to our stakeholders

Example: how we reduce energy consumption & emissions on our sites

Towards Net Zero scope 1+2 emissions by 2025

Energy efficiency & climate action	'21	'Actual	'23	'24	'25	metric	k
Circular economy	39	26.7	30	25	0	ktCO ₂	N D E
	Ex	amples of	actio	ns			
		T					E
							20
			>-				E
							10 S
							Fi ye
	and the second s						

ASM

Q2 2023

(PI **Q3 | 2022 UPDATE** Net scope 1+2 CO2 emissions

efinition missions from Manufacturing & Buildings

Energy measurement & reporting

021: 57 locations: covering >95% of CO2 emissions

Renewable energy

- Global share renewable electricity: 92%
- NL & US: 100% renewable electricity

Energy grid

otal annual savings CRE masterplan: 00 TJ (~100,000 solar panels)

Solar Run cooperative

irst project: €70k invested by 150 colleagues, panels delivered by ear-end

nabling colleagues to put solar panels on ASML roofs

Public

Example: Re-use is the biggest learning opportunity for all of us We drive to zero waste ASML

Business update

Investor key messages

- Global megatrends in the electronics industry, supported by a highly profitable and fiercely innovative ecosystem, are expected to continue to fuel growth across the semiconductor market
- Growth in semiconductor end markets and increasing lithography intensity are driving demand for our products and services
- ASML's comprehensive product portfolio is aligned with our customers' roadmaps, delivering cost effective solutions in support of all applications from leading edge to mature nodes
- Based on different market scenarios¹ as presented during our Investor Day in November 2022, we modeled an opportunity to reach annual revenue in 2025 between approximately €30 billion and €40 billion, with a gross margin between approximately 54% and 56% and in 2030 an annual revenue between approximately €44 billion and €60 billion, with a gross margin between approximately 56% and 60%
- ASML and its supply chain partners are actively adding and improving capacity to meet current and future customer demand
- We continue to accelerate the execution of our ESG Sustainability strategy and have shared the latest progress and actions to reach our ambitious targets in our integrated Annual Report 2022
- We expect to continue to return significant amounts of cash to our shareholders through a combination of growing dividends and share buybacks

Q2 results highlights

- Net sales of €6.9 billion, net system sales of €5.6 billion, Installed Base Management¹ sales of €1.3 billion
- Gross margin of 51.3%
- Operating margin² of 32.8%
- Net income as a percentage of net sales of 28.1%
- Earnings per share (basic) of €4.93
- Net bookings³ of €4.5 billion
 - including EUV bookings of €1.6 billion

- ² Income from operations as a percentage of Total net sales
- ³ Net bookings include all system sales orders and inflation related adjustments, for which written authorizations have been accepted.

¹ Installed Base Management equals our net service and field option sales

Net system sales breakdown (Quarterly)

Total net sales € million by End-use

25,000

¹ Installed Base Management equals our net service and field option sales

ASML

Outlook

Q3

- Net sales between €6.5 billion and €7.0 billion, including
 - Installed Base Management¹ sales of around €1.4 billion
- Gross margin of around 50%
- R&D costs of around €1.0 billion
- SG&A costs of around €285 million

2023

- Expected net sales growth towards 30% with a slight improvement in gross margin, relative to 2022
- Estimated annualized effective tax rate between 15% and 16%

¹ Installed Base Management equals our net service and field option sales

Thanks

 \bigcirc

